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Transport on directed percolation clusters
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We study random lattice networks consisting of resistorlike and diodelike bonds. For investigating the
transport properties of these random resistor diode networks we introduce a field-theoretic Hamiltonian ame-
nable to renormalization group analysis. We focus on the average two-port resistance at the transition from the
nonpercolating to the directed percolating phase and calculate the corresponding resistance exponentf to
two-loop order. Moreover, we determine the backbone dimensionDB of directed percolation clusters to
two-loop order. We obtain a scaling relation forDB that is in agreement with well known scaling arguments.
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Percolation@1# is a leading paradigm for disorder. It pro
vides an intuitively appealing and transparent model of
irregular geometry which occurs in disordered system
Moreover, it is a prototype of a phase transition. Though
usual isotropic percolation~IP! has attracted most attention
directed percolation~DP! @2# is a sexy model for study a
well. DP shows many qualitatively new features not appe
ing in IP. DP is perhaps the simplest model resulting
branching self-affine objects. It has many potential appli
tions, including fluid flow through porous media under gra
ity, hopping conductivity in a strong electric field@3#, crack
propagation@4#, and the propagation of surfaces at depinn
transitions@5#. Furthermore, it is related to epidemics with
bias @6# and self-organized critical models@7#. While the
transport properties of IP have been studied extensiv
@8–13#, relatively little is known about transport in DP. Th
transport properties of DP have not been addressed hith
by using sophisticated analytic methods such as renorm
ized field theory.

A model which captures both IP and DP is the rand
resistor diode network~RDN! introduced by Redner@14–
16#. A RDN consists of ad-dimensional hypercubic lattice in
which nearest-neighbor sites are connected by a resist
positive diode~conducting only in a distinguished direction!,
a negative diode~conducting only opposite to the distin
guished direction!, or an insulator with respective probabil
ties p, p1 , p2 , and q512p2p12p2 . In the three-
dimensional phase diagram~pictured as a tetrahedro
spanned by the four probabilities! one finds a nonpercolatin
and three percolating phases. The percolating phases are
tropic, positively directed, or negatively directed. Betwe
the phases there are surfaces of continuous transitions
four phases meet along a multicritical line, where 0<r
ªp15p2<1/2 and p5pc(r ). On the entire multicritical
line, i.e., independently ofr, one finds the scaling propertie
of usual isotropic percolation (r 50). For the crossover from
IP to DP see, e.g., Ref.@17#.

In this Rapid Communication we focus on the vicinity
the critical surface separating the nonpercolating and
positively directed phase. Here, typical clusters are an
tropic and they are characterized by two different correlat
lengths:j i ~parallel to the distinguished direction! and j'

~perpendicular to it!. As one approaches the critical surfac
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the two correlation lengths diverge with the exponentsn i and
n' of the DP universality class.

In the first part of this paper we study the average re
tance between two connected sitesx andx8 when an external
currentI is injected atx and withdrawn atx8. We choosen
51/Ad(1, . . . ,1) for thedistinguished direction. We assum
that the bondsb^ i , j & between two nearest-neighboring sitei
and j are directed so thatb^ i , j &•n.0. The directed bonds
obey the nonlinear Ohm’s law

s i , j~Vj2Vi !@Vj2Vi #5I i , j , ~1!

whereVi is the potential at sitei andI i , j denotes the curren
flowing from j to i. The bond conductancess i , j are random
variables taking on the valuess, su(V), su(2V), and 0
with respective probabilitiesp, p1 , p2 , andq. s is a posi-
tive constant andu denotes the Heaviside function. Note th
the diodes are idealized: under forward-bias voltage they
have as ‘‘ohmic’’ resistors, whereas they are insulating un
backward-bias voltage.

A central role in our theory is played by the power

P~$V%!5(
^ i , j &

s i , j~Vj2Vi !@Vj2Vi #
2 ~2!

dissipated on the network. The sum in Eq.~2! is taken over
all bonds of the lattice. Following an idea by Stephen@18#
and its generalization to networks of nonlinear resistors
Harris @19# we exploit correlation functions ofcl(x)
5exp(ilVx) as generating functions of the resistan
R(x,x8) betweenx andx8. Note thatl5 i I is an imaginary
current. With help of the saddle point method~the integra-
tion is not Gaussian due to theu functions! we find

^cl~x!c2l~x8!&

5
1

ZE )
i

dViexpF2
1

2
P~$V%!1 il~Vx2Vx8!G

}expF2
l2

2
R~x,x8!G , ~3!

provided that the conditionI 2@s holds.Z in Eq. ~3! stands
for the usual normalization.
©2001 The American Physical Society03-1
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We are interested in the average^•••&C of R over all
diluted lattice configurations which we will denote byMR .
Hence, we switch toD-fold replicated voltagesVi→VW i

5(Vi
(1) ,•••,Vi

(D)) and imaginary currentsl i→lW i5(l i
(1) ,•

••,l i
(D)). The replication procedure induces the effecti

Hamiltonian

H rep52 lnK expF2
1

2
P~$VW %!G L

C

. ~4!

For technical reasons@20# we switch to discretized voltage
uW and currentslW taking values on a discreteD-dimensional
torus. For the saddle point method to be reliable we w
near the limit when all the components oflW are equal and
continue to large imaginary values. Accordingly, we set@19#
l (a)5 il01j (a) with real positivel0 and j (a), (a51

D j (a)

50, and impose the conditionsl0
2!D21 andjW2!1.

To refineH rep towards a field theoretic Hamiltonian, w
expandH rep in terms ofclW (x). The steps are analogous
those in Ref.@19# and are skipped here for briefness. The
obtained expression is converted into a Landau-Ginzbu
Wilson-type functional

H5E ddxH 1

2 (
lW Þ0W

c2lW ~x!

3@t2¹21wlW 21„u~l0!2u~2l0!…v•¹#clW ~x!

1
g

6 (
lW ,lW 8,lW 1lW 8Þ0W

c2lW ~x!c2lW 8~x!clW 1lW 8~x!J ~5!

by applying the usual coarse graining procedure. The par
etert specifies the ‘‘distance’’ from the critical surface u
der consideration. The vectorv lies in the distinguished di-
rection,v5vn. t andv depend on the three probabilitiesp,
p1 , andp2 . w is the coarse grained analog ofs21. In the
limit w→0 our HamiltonianH describes the usual purel
geometric DP. IndeedH leads forw→0 to exactly the same
perturbation series as obtained in Refs.@21–23#.

We proceed with standard methods of field theory@24#
and perform a diagrammatic perturbation calculation up
two-loop order. As in our previous work on transport in
@9–13#, the principle propagator consists of an conduct
and an insulating part. Hence, the principle Feynman d
grams can be decomposed into conducting diagrams con
ing of conducting and insulating propagators. These cond
ing diagrams can be interpreted as being directed netw
themselves. This real-world interpretation leads to a subs
tial simplification of the actual calculation. Instead of carr
ing out tedious summations over loop currents, we just h
to determine the total resistance of the conducting diagra
The remaining steps in calculating the diagrams are w
known from the field theory of DP@21–23#.

Renormalization group analysis provides us with the sc
ing behavior of the correlation function
02510
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^clW ~0!c2lW ~x!&H

5ux'u12d2h f 1S xi

ux'uz
D

3H 11wlW 2ux'uf/n' f w,1S xi

ux'uz
D 1•••J

5xi
(12d2h)/zf 2S ux'uz

xi
D H 11wlW 2xi

f/n i f w,2S ux'uz

xi
D1•••J ,

~6!

whereh, n' , andz5n i /n' are the critical exponents for DP
known to second order ine-expansion@22,23#. f 1 , f 2 , f w,1 ,
and f w,2 are scaling functions. In Eq.~6! we introduced the
resistance exponentf. Exploiting the fact that the correlation
function in Eq.~6! is a generating function forMR @cf. Eq.
~3!# we deduce thatMR;uxiuf/n i if measured parallel to the
distinguished direction. For measurements in other directi
it is appropriate to choose a length scaleL and to express the
longitudinal and the transverse coordinates in terms ofL:
ux'u;L and xi;Lz. With this choice the scaling function
f w,1 reduces to a constant and we obtainMR;Lf/n'. For the
resistance exponent we find ine-expansion

f511
e

24
1

1512314 ln~4/3!

6912
e21O~e3!, ~7!

wheree552d. Note thatf is larger than the correspondin
resistance exponent for the random resistor network~RRN!
@25,9#. This is intuitively plausible, since long tortuous pat
that contribute to the macroscopic conductance in RRN
suppressed in DP.

Now we compare Eq.~7! to the few numerical results
available in the literature. We are not aware of any numer
results forf itself. However, Redner and Mueller@26# de-
termined the conductivity exponentt5f1(d21)n'1n i in
two dimensions by Monte Carlo simulations:t(d52)50.6
60.10. Aroraet al. @27# did analog and numerical simula
tions leading tot50.7360.10. Another value for compari
son is t'0.7 obtained by Redner@15# from a real space
renormalization group calculation. Crudely evaluating t
e-expansion oft for small spatial dimensions leads inevitab
to poor quantitative predictions. Therefore, it is appropri
to improve the expansion by incorporating rigorously know
features. By carrying out a rational approximation whi
takes into account thatt(d51)50 we obtain the interpola-
tion formula

t'S 12
e

4D ~210.2083e10.0604e2!, ~8!

which leads tot(d52)'0.8.
The second part of this paper is devoted to the backb

dimension in DP. The backbone between two sitesx andx8
is defined, apart from unimportant Wheatstone-bridge-ty
configurations, as the union of all bonds carrying curre
when I is inserted atx and withdrawn atx8. The average
3-2
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number of bonds belonging to the backbone is referred to
its massMB . For the purpose of calculating the backbo
dimensionDB we assume that the bonds obey a generali
Ohm’s law,

s i , j~Vj2Vi !@Vj2Vi #@Vj2Vi #
1/r 215I i , j . ~9!

The parameterr measures the nonlinearity of the bon
s i , j (Vj2Vi) takes on the same values as in the first part. T
field-theoretic Hamiltonian for the generalized RDN is giv
by Eq. ~5! with wlW 2 replaced by2wr(a5a

D (2 il (a)) r 11.
In the following we are going to use that the avera

resistance of the generalized RDN,MRr
, and the backbone

mass are related viaMB; limr→211MRr
~see, e.g., Ref.

@11#!. A two-loop calculation analogous to that in part o
reveals that the coupling proportional towr does not require
an individual renormalization in the limitr→211. As a
consequence we obtain

lim
r→211

f r /n'5z2h, ~10!

at least to second order ine. From the generalized version o
Eq. ~6! we deduce that the backbone mass scales as

MB5ux'uf21 /n' f w,1S xi

ux'uzD . ~11!

For self-affine objects the notion of fractal dimension
less straightforward than for self-similar objects. To det
mine the fractal dimension of the DP backbone one consid
a d21-dimensional hyperplane with an orientation perpe
dicular toxi . The cut is a self-similar object with the fracta
dimension

dcut5DB21, ~12!

whereDB is the local fractal dimension of the backbone@28#.
According to Eq.~11! the mass of the cut scales like
lin

a
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21f w,1S xi

ux'uzD . ~13!

By choosing once moreux'u;L and xi;Lz we find that
M cut;Lf21 /n'2z. This leads via Eqs.~12! and ~10! to

DB511f21 /n'2z512h5d22b/n', ~14!

whereb5n'(d211h)/2 is the DP order parameter expo
nent known to second order ine @22,23#.

Equation ~14! is in agreement with scaling argumen
@29#, yielding that the fractal dimension of the transverse
through a DP cluster with local dimensiondf is df215d
212b/n' . The analogous cut through the backbone can
viewed as the intersection of the cut through the cluster
the clusters backward oriented pendant@15,27#. Hence, the
codimension of the backbone cut is twice the codimens
b/n' of the cluster cut, which leads again to Eq.~14!.

We conclude with a few remarks. Our approach gives
~14! perturbatively to second order ine, while the scaling
arguments leading to Eq.~14! are exact. Hence, Eq.~14! has
a manifestation in the renormalization group framework
form of some Ward identity. The fact thatw21 renormalizes
trivially to two-loop order is reminiscent of this Ward iden
tity. It is an interesting issue for future work to identify th
Ward identity and its underlying symmetry. Our result f
the resistance exponentf is for dimensions close to 5 th
most accurate analytic estimates that we know of. In t
dimensions our results show reasonable agreement with
known numerical results. It is certainly desirable to ha
more and firmer numerical data for comparison with our a
lytic results, in particular in three dimensions. We hope t
this letter triggers further simulations of transport in DP.
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sche Forschungsgemeinschaft. We thank S. Redner
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of an error in our initial calculation.
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